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The "Principle of Increasing Mixing Character", previously postulated by one of us (and derived 
for the case of an ensemble of isolated systems obeying a "master equation") as a stronger version of 
the second law of thermodynamics, is re-derived using von Neumann's density matrix formulation of 
statistical mechanics. To make the principle more convenient for applications, it is reformulated in 
terms of "Mixing Homomorphic Functions", a set of state functions all of which must increase in an 
allowed irreversible process in anqsolated system. The entropy is one such function, but no one func- 
tion, and no finite set of functions, suffices to determine the increase of mixing character. The principle 
is extended to the case of a system which is not isolated, but in contact with a heat bath, for which it 
takes a form which we name the "Principle of Decreasing Mixing Distance" from the equilibrium dis- 
tribution. As examples, applications are made to two simple cases: diffusion in an ideal solution, and 
chemical reactions in ideal gas mixtures. 

Key word." Irreversible process 

1. Introduction 

The time development of  a Gibbs (microcanonical) ensemble of  isolated systems 
proceeds in such a way that the mixin 9 character increases monotonically. 

T h e  f o r e g o i n g  is a s t a t e m e n t  o f  t h e  " P r i n c i p l e  o f  I n c r e a s i n g  M i x i n g  C h a r a c t e r " ,  

f i rs t  o b t a i n e d  in  a n  e a r l i e r  p a p e r  b y  o n e  o f  us  [1 ] .  I t s  m e a n i n g  m a y  b e  u n d e r s t o o d  

as  f o l l o w s :  

I f  we  d e n o t e  t h e  p r o b a b i l i t y  (o r  p o p u l a t i o n ,  d e p e n d i n g  o n  n o r m a l i z a t i o n )  o f  

t h e  ~ ' t h  s t a t e  b y  p~,  t h e n  a s t a t i s t i c a l  d i s t r i b u t i o n  is c h a r a c t e r i z e d  b y  {p~}, t h e  set  

o f  al l  t h e s e  q u a n t i t i e s .  W e  a s s o c i a t e  w i t h  {p~} a " d i a g r a m  d i s t r i b u t i o n "  ~ = {p j}, 
w h i c h  c o n s i s t s  o f  t h e  s a m e  n u m b e r s  a r r a n g e d  in  n o n i n c r e a s i n g  o r d e r :  1 

Pl >>'Pz ~P3 ~ . . . .  

ThroughOut this .paper, probabilities with Latin indices are assumed to be arranged in non- 
increasing order, with pj thus denoting the probability of the j ' t h  most probable state. Greek indices 
indicate that the order is arbitrary, with p~ denoting the probability of state c~. At times, both types of 
indices will be used with the same distribution in different equations. 
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Different probability distributions which correspond to the same diagram distri- 
bution are called "mixing equivalent". Such distributions differ from one another 
by permutations of the probabilities p~ among the states c~. 

The mixing character marks a property which is the same for mixing equivalent 
distributions and is therefore sufficiently determined, if defined for diagram dis- 
tributions. Let m[7] denote the mixing character of 7, the relations "greater than 
or equal to" be expressed through " ~ " :  then the increase of mixing character is 
defined as follows: 

V ( ~  pj'-<-.~ ~ pj)  ~ m[7']~m[7]. (1) 
j =1  j =1  

In part B of Ref. [I],  which we refer to from now on as liB], the concept of 
mixing character was arrived at through the analysis of the role of row and column 
partitions in Young diagrams if they are used to represent classifications of finite 
sets. For Young diagrams, however, a partial ordering and lattice structure was 
defined and studied five years ago [2]. This structure has relevance in mathe- 
matics, as was pointed out in part A of Ref. Ill .  It turned out that this partial 
ordering corresponds precisely to the relation "more mixed than", according to 

m[v']>rn[7] .,~ 7'=% (2) 

If 7 and y' are two different Young diagrams with the same total number of boxes, 
then the relation 7' = 7, according to Ref. [2], can be defined in three equivalent 
ways, viz: 

7' is obtainable from ~ by moving boxes exclusively downward and to the left. 
(3a) 

v~ <~ ~,, vj (3b) 
j=~ j = l  

for all r, where the vj and vj are the row lengths of 7 and 7' respectively, arranged 
in nonincreasing order, 

j = l  j = l  

for all r, where the/~j and #j are the column lengths of 7 and 7' respectively, arranged 
in nonincreasing order. 

The close analogy between (3b) and definition (1) above is evident at a glance, 
and becomes precise if, for an ensemble with a finite number of members, one 
simply identifies the populations of the various states with the row lengths of a 
Young diagram. 

It is important to realize that the "greater than" relation 7~ 7' is a partial 
ordering of distributions or diagrams, and that there can be pairs of distributions 
which are not mixing equivalent and also not comparable with one another as 
regards mixing character, i.e., such that neither is more mixed than the other. 
For example, if 7 has Pl = P 2 - ~ ½ ,  all others zero, and 7' has P'I =~, ' ' P2 = P 3  = ~ ,  
others zero, one easily verifies from definition 1 that neither is more mixed than 
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the other. The diagram analog of this is the pair of diagrams with row lengths 
(3, 3) and (4, 1, 1), for which the definitions (3a, b, c) all lead to the conclusion that 
neither is greater than the other. 

In [1B], it was shown that increase of the Shannon entropy S= - Z ~  P~ in p~ 
is a necessary, but not sufficient, condition for increasing mixing character. It was 
also shown that the mixing character always increases in ensembles of isolated 
systems obeying a "master equation". It thus seems probable that the principle of 
increasing mixing character may hold with considerable generality, i.e., that in 
allowed irreversible processes for an isolated system the mixing character always 
increases. If true, this principle would afford a strengthening of the second law of 
thermodynamics, since it would permit one to rule out processes, allowed by con- 
ventional thermodynamics, for which the entropy increases but the mixing 
character does not. For example, in the case of the distributions ? = (½, ½, 0, 0 . . . .  ) 

t 2 a n d T - ( 7 , 1  1 ~, ~, 0 . . .  ) cited above, it is easily verified that the latter has the greater 
Shannon entropy. Thus, a transition from a distribution characterized by ? to 
one characterized by 7' would be allowed by conventional thermodynamics, but 
ruled out by the principle of increasing mixing character. 

In Section 2 of the present paper, we present a second argument for the prin- 
ciple of increasing mixing character, which does not depend on the "master 
equation", but is based on von Neumann's density matrix formulation of the 
second law. It is perhaps a matter of taste which of these two arguments is to be 
preferred; together, however, we find them quite persuasive. Thus fortified in our 
belief that the principle does in fact hold with great generality, we proceed in the 
following sections to reformulate and develop it in a way convenient for applica- 
tions. Finally, we give two very simple applications. In order to understand the 
present paper properly, it is desirable (though not absolutely essential in a first 
reading) that the reader be acquainted with [1B]. 

2. Derivation with Density Matrix Formulation 

We consider a Gibbsian ensemble described by a quantum mechanical density 
(statistical) matrix p. According to von Neumann [3], the act of measurement 
corresponds to replacing p by a new statistical matrix p(d) consisting only of the 
diagonal elements of p in the representation determined by the measurement 

p ~ p(d), ,~(d) ~,~p = p~6~p =p~ 6~p (4) 

where p'~ is the probability that a randomly chosen member of the ensemble is in 
the state ~ after the measurement. The measurement, in other words, simply 
determines how many ensemble members are in each eigenstate of the variable 
measured, and leaves the phases between these states random. It was shown by 
von Neumann that the process (4) always leads to an increase in the entropy, 
defined here by 

S = -Tr(p  in p). 

We now proceed to show that the process (4) also leads to an increase in the 
mixing character. 
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Since the matrix p is related to its diagonal form/5 by a unitary transformation: 

p = U/SU *, /5.~ =p,6,~ 

it follows that the new probabilities after the process (4) are given by 

la, V 11 

where 

From the unitarity of U, one sees immediately that the matrix B is "bistochastic", 
i.e., that all its elements are real and non-negative and that 

Bup = ~ Bu~ = 1. 
u 

We now invoke a theorem due to Hardy, Littlewood and P61ya [41, which was 
also used in [1B]. It states that, for two probability distributions {p.} and {p'~}, 

~=~ pj-.~ (6) 
/~ j = l  j = l  

where B is bistochastic. 
Because of (6), Eq. (5) expresses the fact that the distribution {p'~} is more 

mixed than {p~}. Therefore the principle of increasing mixing character holds 
whenever the time development of a system is described by process (4). 

A. Uhlmann has defined a "more mixed"-relation between density matrices [51 
that corresponds precisely to the one which we derived in terms of Young dia- 
grams El, 21. Uhlmann's definition can be presented in the following form: 

m[p']N-m[p] ~ p'= ~ c~U(~)pU ~)* (7) 
z 

where the U (z) are unitary and cz>~0, Z~ ca= 1. 
Eq. (4) is easily seen to be a special case of the equation on the right-hand side 

of (7). This equation, however, may also be interpreted as describing a process that 
connects p' at a later time with p at an earlier time. A process of this type includes 
cases in which the loss of informations is caused by unknown perturbations un- 
related to measurement, or by a measurement of less than a complete set of com- 
muting observables, which only partially wipes out the phases. With reference to 
this interpretation, definition (7) expresses the fact that processes of this more 
general type also effect an increase of the mixing character, since one can easily 
show by exactly the same method of proof used above, that the right-hand side 
of (7) also implies that p' is more mixed than p in our sense. 

The arguments presented here, together with those given in [1B1, encourage 
us in the belief that the range of validity of the principle of increasing mixing 
character is as wide as that of thermodynamics itself, or nearly so. Neither deriva- 
tion, for example, depends on any special properties of the Hamiltonian of the 
system, such as its time-independence, or symmetry properties. Of course, we 
have not removed the difficulties associated with the transition from mechanics 
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(which is time-reversal invariant) to thermodynamics (which is not). However, the 
difficulties do not take any more severe a form in the present case than in attempted 
derivations of the entropy principle: the assumptions which one needs to make to 
derive the entropy principle also lead to increasing mixing character. 

We therefore feel justified in postulating that the principle of increasing mixing 
character holds with a generality close to that of thermodynamics itself. 

3. Representation of the Mixing Character through Functions 

3.1 Mixing Homomorphic Functions 

For purposes of applications, it is useful to have functions of the probabilities 
making up a distribution which never decrease when the mixing character in- 
creases 2. Such functions were called "mixing homomorphic" in [-1B], because 
each one can be understood as a homomorphism of the partially ordered mixing 
character onto the ordered real numbers. One example of such a function is, of 
course, the entropy. Entropy increase, however, is only a necessary, not a sufficient, 
condition for increasing mixing character. Thus, by defining more mixing homo- 
morphic functions and requiring them to increase, we can derive new inequalities 
that must be obeyed by allowed irreversible processes. 

Consider therefore a function of the form rn~; 7) = ~ g(P~) or in density 
matrix notion m(g; p)= Tr g(p), where g(x) is a continuous function of x. m~;  7) 
will be mixing homomorphic if and only if 

mET']>mE?] ==~ rn(g; y')>~m(g; 7). (8) 

According to Ref. [1B] the idea of increasing mixing character is based on the 
effect of mixing, and mixing operators have been shown to be represented by 
bistochastic matrices. The definition of increasing mixing character, related to 
this idea (Def. le in Ref. [1B]), is given through 

m[7']~-m[7 ] .¢~ p'~= ~ B~pp~ where Bis  bistochastic; 3 (9) 
P 

therefore, (8) means that m(g; 7) will be mixing homomorphic if and only if, for 
all p,,  and bistochastic B, the function g satisfies 

Z g (~, B~aPp) >~ Z g(P~). (10) 

To see what (10) implies, we first consider a special case. Suppose that Pl ~P: ,  
P] =P~ =½(Pl +P2), P'~ --P~, ~ > 2. This corresponds to B 11 = O12 = 9 2 1  = 9 2 2  = 1 ,  

B~,= 1, ~> 2, all other B,a=0. For this case, (10) becomes, after subtracting off 
terms which are equal on both sides, and dividing by 2, 

g(½(Pl +P2))~>½(g(Pl) +g(P2)) for all Pl ,  Pz. (1 la) 

2 To save writing, we will sometimes simply say that  such a function "mus t  increase". In such 
cases, it should be unders tood that it may  also remain unchanged.  

3 That  this is an equivalent definition of increasing mixing character also follows from the theorem 
of Hardy, Littlewood, and P61ya [4] already cited in Sect. 2. 



100 E. Ruch and A. Mead 

Eq. (1 la), however, is just one definition of a convex function, a function such 
that the midpoint of every chord ties on or below the curve of the function [6]. 
Hence, (10) can only be satisfied if g is convex. If g is even piecewise continuous 
(1 la) is equivalent to 

g(~ e~p~)>~ • c[3g(p~) (l lb) 

for arbitrary c[3 >~ 0 with ~ c[3 = 1. Because of the identity 

Z Z B,t~g(P[3) = Z g(P~) 
[3 ct 

(provable by summing first over e on the left-hand side), Eq. (10) can be trans- 
formed into 

Eg (Z B~P[3) >'' Y', (Z B~[3g(p[3)). 

Because of (1 lb), this is satisfied term by term if g is convex, since the B,[3 with 
fixed e satisfy the criteria for c[3 in (1 lb). We have thus proved 

Theorem 1. A function m(9; ?) is mixing homomorphic if and only ifg is convex. 

Either (1 la) or (1 lb) may be used as a definition of convexity. If  g(p) is twice 
differentiable, an equivalent definition is g"(p)<~ O. 

To get an intuitive feel for the meaning of the requirement that all m(9; ?) 
must increase, consider a process in which an infinitesimal probability 6p is trans- 
ferred from state e to state ft. For this process, 

3m(g; ?) = {g'(p[3) -g'(p,)}6p 

which, with convex g, will be positive only if p,  >p[3. Thus, our principle in this 
case is equivalent to the common-sense requirement that less populated (prob- 
able) states gain population at the expense of more populated ones. 

Any convex g(p) defines a mixing homomorphic function m(9; ?), and thus 
leads to requirements on allowed thermodynamic processes. In particular cases, 
one may wish to choose g's which lead to the strongest results, or those which 
require the least effort to evaluate the m's. The best-known example, of course, 
is the first of the following three examples (12a, b, c). Functions of the second type 
may be used for purposes of computational convenience. The third class of func- 
tions will be discussed in detail in the subsequent subsection: 

gs(P) = -Pin  p (12a) 
rn(gs; 7) = S(?), the Shannon entropy; 

g , ( p ) = - p " ,  n > l  
m(9,; ?) = - ~ p ~ " ;  (lZb) 

gx(P)- 2 = 2 - p  for p > 2  (12c) 

rn(ga; 7) = - 2 (p~-  2). 
{ctlp=~> A} 
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3.2 Mixing Isomorphic Sets of Functions 

No single mixing homomorphic function is sufficient to determine the increase 
of the mixing character; however, it may happen that a set of such functions, all 
of which are required to increase, is sufficient. To investigate this possibility, we 
make the following definition : 

Definition 1. A set of mixing homomorphic functions {m(9; 7)} is called mixing 
isomorphic if, for every 7, ?' with m[7']~km[7], there is at least one m(g; 7) in 
{m(q; 7)} for which re(y; 7')<m(q; 7). 

Thus, if a mixing isomorphic set exists, the requirement that all its members 
increase is a sufficient as well as a necessary condition for increasing mixing charac- 
ter. Any mixing isomorphic set of functions may serve as definition of the partial 
ordering in the set of diagram distribution. 

We now state and prove 

Theorem 2. The functions m(qz ; 7) defined by (12c) with 0 ~<2 ~< 1 form a mixing 
isomorphic set. 

What needs to be proved is the conclusion from the left to the right side of(13) : 

V( ~ (p'~-2)~< ~ (p~-2))<=> V( ~lp~< ~py). (13) 
To show this, we choose 2 =Pr and note that 

(P , -Pr )  = ~ (Pj--Pr)=-rPr+ ~ Pj 
(~l w>~pA j= a j= 1 

(14) 

(P'~-Pr)>~ L (PJ-Pr)=-rPr + ~ P;" " 
(o~ I P~ >1 Pr} j = 1 j = 1 

The inequality between the two sums in (14) follows since, whenever both sums 
differ, the right-hand sum either does not contain certain members (p'~-p',) con- 
tained in the left sum, all of which are positive; or it contains members (p'~-p~) 
not contained in the left-hand sum, all of which are negative. From (14) follows 
the conclusion from left to right in (13). Since the conclusion in the opposite 
direction is obvious, theorem 2 is proved. 

From theorem 1 and 2 one immediately obtains the 

Corollary. The set of all m(g; 7) with arbitrary convex g is a mixing isomorphic 
set. 

In the appendix some necessary conditions for mixing isomorphic sets are 
derived. 

Eq. (13) represents two equivalent definitions of the partial ordering of the 
mixing character. With the abbreviations 

r 

= Z p, 
i = 1  (15) 

- 
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we may write: 

rn[7']>-m[7 ] <:~ 7 ' c 7  <:~ V(or(7')<~o,(y)) <:~ V(ua(3,')>~ua(7)). (16) 
r 

A diagram distribution ~ is illustrated in Fig. la, where the shaded area is assumed 
to be 1 as the condition Z~Pj = 1 holds. The or(y) and uz(7) correspond to the 
areas shaded in Fig. lb and lc respectively. This illustration indicates the com- 
parison with the case of diagrams with a finite number of boxes. If we replace 
p~ by v]n with v i representing the numbers of  boxes in each row of a diagram with 
n boxes, then nor('~ ) and nu~(~) with 2 = l/n, 2/n, . . .  n/n denote the partial sums of 
rows and columns respectively. Thus (16) represents besides (3b) the definition 
(3c) without the limitation to diagrams with a finite number of boxes. 

Fig. la Fig. lb  

l 
Y 

? 

Fig. lc 

In Ref. [IB],  the row and column partitions of a diagram have been associated 
with the concepts of  statistical order and disorder. The mixing character criteria 
according to (16) refer to both these aspects also in the case where general proba- 
bility distributions are concerned. The advantage of having at hand mixing iso- 
morphic sets of functions will become evident, if we try to transfer the principle 
of increasing mixing character to systems which are not isolated. We shall now 
discuss this problem. 

4. System in Interaction with Bath 

Up to now, we have been concerned exclusively with isolated systems, while 
most practical applications are concerned with systems in weak interaction with 
some sort of  bath. In conventional thermodynamics, one can start with the 
entropy principle for an isolated system, apply it to a combined system consisting 
of  bath and system of  interest, and derive results such as the decrease of Gibbs or 
Helmholtz free energy for systems with constant temperature and pressure or 
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volume. In this section, we carry out the analogous derivation for the principle of 
increasing mixing character. 

Consider, therefore, a system 1; which can be mentally divided into two parts : 
a system of interest A, and a bath B, in weak interaction with one another. Denote 
the states of A by a, fl, etc., those of B by capital letters ~b, etc. The direct product 
states [ c ~ ) =  Ic~)[45) form a complete set for 2;. In most cases, only certain states 
will be accessible, e.g., those with given total energy for 2;. This means that, in 
general, only certain ~ will be "compatible" with each ~, i.e., only certain q~ will 
be accessible to B when it is given that A is in the state ~. In the cases normally 
considered, two states e and fl either possess no compatible 4~ in common, or all 
compatible with ~ are also compatible with ft. For example, if 27 has fixed total 
energy W, the ~b compatible with ~ are those with E~ = W - E ~ .  If  E~ = Ep, all 
these will also be compatible with fl; otherwise, none of them will. In the beginning, 
we shall not assume this property of "total mutual compatibility", but we shall 
see in subsection 4.2 that when it is not satisfied no unique equilibrium state for 
the bath can be defined when A is not in equilibrium. 

We present three derivations, all leading to the same result, in subsections 
4.1, 4.2, and 4.3. The first of these is in terms of classical probabilities, the second 
in terms of quantum mechanical density matrices, and the third, which makes no 
specific reference to the bath, is in terms of a master equation. The results are sum- 
marized in subsection 4.4. by means of the "principle of decreasing mixing dis- 
tance from the equilibrium distribution". The connection of all this with conven- 
tional thermodynamics is discussed in subsection 4.5. The related problem of 
partial equilibrium is treated in subsection 4.6. 

4.1 Classical Probability Formulation 

In this subsection, we consider the system 2; to be entirely describable in terms 
of classical probabilities. The system of interest A is not necessarily in equilibrium: 
the probabilities 

p~= ~ P ~  
q~ 

are fixed but arbitrary. The bath, however, must be assumed to be in equilibrium 
in order to obtain unambiguous results. In other words, the mixing character of 
the total system 2~ must be maximized subject to the constraint of fixed p, .  With 
this assumption, our task is to express an arbitrary mixing homomorphic function 
for m(g; ?) in terms of the variables of A alone. 

We first maximize the mixing character of IJ subject to fixed p, .  We require 

6{m(9; y ) -  Z l~p~} = 0 
~t 

where the l~ are Lagrange multipliers. (The convexity of g guarantees that any 
stationary point will be maximum.) Writing out the variation explicitly, we obtain 

Z g'(p,~)6p,~- Z 1,6p~ = O. 
aq~ a~  
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Since the 5p~ are arbitrary, this equation is satisfied for arbitrary convex g if 
and only if all the p~e for given e are equal. We therefore have 

P~ p ~  = 

where ~ ,  is the number of bath states compatible with e. Mixing homomorphic  
functions of the system 2; according to (8) can now be expressed as sums over 
states of  the system A alone, 

By introducing the equilibrium probabilities w~ of the system A, that are given by 

where g? is the total number  of accessible states in ~, 

we arrive at: 

where G(x) = ~?g(x/f2) is again an arbitrary convex function of its argument, which 
however, now ranges from zero to infinity. Thus mixing homomorphic  functions 
of the system ~ expressed in terms of variables, that refer to the system A alone, 
may be written as follows: 

\w~/  

Our principle now states that, for a system in interaction with a bath, all the 
a(G; p, w) for arbitrary convex G must increase in an allowed irreversible process. 

4.2 Density Matrix Formulation 

Here we treat basically the same problem as in the previous subsection, but 
with ~ now described by a density matrix p~ with elements (c~ lOz] /~ ' ) ,  it being 
assumed that there exists a complete set of accessible states which are all of  the 
form lag) .  The state of A alone is described by the reduced density matrix p, 
whose elements are given by 

We note that, i f  c¢ and/~ possess no compatible • in common, then {~lpl/ff) is 
necessarily zero. As before, our task is to express a mixing homomorphic function 
re(g; p ) = T r  g(Pz) in terms of p alone, assuming that the mixing character has 
been maximized subject to fixed p. We carry out this constrained maximization 
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first, using this time a particular mixing homomorphic  function - T r  p2. Intro- 
ducing Lagrange multipliers l~,  we find: 

We first equate to zero the coefficient of ~(/~¢' Ipx[~> with 0~¢ 4~' and obtain 

For  45 = ~' ,  we find 

- -  2 l~ /~ ,  (18) 

independently of • for given ~,/L Since we must have 

(18) is satisfied only if 

2 = 

1 

where ~2,~ is the number of bath states compatible with both e and/~, and of  
course, ¢ itself must be compatible with both. 

If  instead ofg(p)  = _p2,  we had used (say) g(p)  = - p " ,  we would have obtained 
instead of (18), 

(c~¢ [ p~- 1[ f i e )  = _ 1 l= (20) 
n /~ 

independently of  • for gwen e, ft. Now consider the special case in which (~[p]~c) 
is the only matrix element o f p  with (~[ on the left, and let • be a state of  the bath 
which is compatible with both c~ and ~c, ~ '  a state compatible with c~ but not with 
~c. Then we obtain from (19) 

and 

2 1 

which contradicts (20), according to which these two matrix elements should be 
equal. We conclude, then, that the bath has a definite equilibrium for each p 
(independently of the function used to determine it) only if our system has the 
property of "total  mutual compatibility" defined in the introduction to this 
section. Since all the cases normally considered have this property in any case, we 
restrict ourselves from now on to systems of  this kind. With this restriction, either 
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and/? have no compatible states • in common (in which case (elp[/~)=0), or 
~2~ = f~=Q~.  Thus, Eq. (19) becomes 

1 

We can now introduce an operator a in the space of the [c~) alone, with matrix 
elements 

a commutes with p, since the latter has matrix elements only between states with 
compatible bath states in common, hence with the same eigenvalue of a. cr and p 
are both in block diagonal form, and within each block, a is just the unit matrix 
for the block multiplied by Q~/~. In this representation, the full density matrix 
Pz is also block-diagonal, the blocks being those of p, each multiplied by 1/f2~ and 
repeated ~ times. Thus, Pz and p can be diagonalized simultaneously by diagonal- 
izing the blocks of Pz separately, and we have for m(g; Pz) 

m(g; pz)=Trg(pz)=~Tr(~g(lp~r-x)). 

Making the same change of scale as in subsection 4.1, we obtain functions in terms 
of the reduced density matrix 

a(G; p, o-) = Tr (aG(pa- 1)) (21) 

where a is the equilibrium reduced density matrix with eigenvalues w,, the equili- 
brium probabilities, and G is again an arbitrary convex function of its argument 
between zero and infinity. We require that all the functions (21) increase in 
allowed processes, which is clearly the quantum-mechanical analog of the result 
of subsection 4.1. 

4.3 Master Equation Formulation 

In this subsection, we make no specific reference to the bath, but simply 
assume that our system (described by classical probabilities) is governed by a 
linear time-displacement operator expressing the probabilities at a later time, 
p'~, in terms of those at time zero, p, : 

p'~ = ~ M~p~. (22) 
p 

Since the total probability must be conserved, we have 

M,~ = 1. (23a) 

Also, it is assumed that there is an equilibrium distribution {w,} which is not 
changed by the time-displacement operator: 

M,~w~ = w~. (23b) 
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If the system obeys a master type equation, but with equilibrium distribution 
{w~} instead of the uniform distribution, then all these conditions are satisfied. 

We define the matrix # by 

#~ = w 21M~pw~. (24) 

It follows from (23b) that 

#~p = 1. (25) 

Now let us compare the value of a function a(G; p, w) before and after the time- 
displacement. We find 

a(G; p', w) = 

=2 

(1 ) 

( ) G'P'~=a(G; w) 

(26) 

where we have used (23a), (24), and (25), and the inequality follows from the 
convexity of G and Eq. (10). 

Eq. (26) is just what we wished to prove, that the functions a(G; p, w) always 
increase for an allowed irreversible process in such a system. 

4.4 Summary: Principle of Decreasing Mixing Distance 

The conclusion of the three preceding subsections is that the approach to 
equilibrium of a system in interaction with a bath is also determined by a partial 
ordering, in which all the functions a(G; p, w) are required to increase. Moreover, 
it is easy to see that all these functions are actually maximized at the equilibrium 
distribution {w~}. For, maximizing an arbitrary a(G; p, w) subject to Z~p~= 1, 
using the Lagrange multiplier l, we find 

This is satisfied for arbitrary G if and only if all the pJw~ have the same value, 
say k. That k must be unity is obvious. 

If a(G;p', w)>>, a(G;p, w) for all convex G, one may speak of the distribution 
{p;} as being "closer" to the equilibrium distribution {w,} than is {p,}, since a 
path from {p~} to {w~} is allowed to pass through {p;}, but not vice versa. Accord- 
ingly, our partial ordering may be described in terms of the "mixing distance", 
defined as follows: 

Definition 2. The mixing distance of a distribution {p,} from a reference dis- 
tribution {w~} is said to be greater than that of {p'} from the same reference 
distribution if for all convex G 

a(G; p', w) >1 a(G; p, w). 
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The mixing distance does not possess all the properties of a distance as normally 
used in mathematics. Nevertheless, we feel justified in our choice of terminology. 

By means of the mixing distance, the results of subsections 4.1, 4.2, 4.3 may be 
summarized as a principle, which of course, is a consequence of the principle of 
increasing mixing character. 

Principle of decreasing mixin 9 distance." The approach to equilibrium of a system 
in interaction with a bath is always in the direction of monotonically decreasing mixing 
distance from the equilibrium distribution. 

Referring as it does to a reference distribution {w~}, the partial ordering in 
terms of mixing distance is different from that of mixing character in that, for 
example, distributions which are mixing equivalent are not necessarily equivalent 
as regards mixing distance from a given reference distribution. For the case of an 
isolated system, or for any system whose equilibrium distribution is the uniform 
one, the functions a(G;p, w) reduce, apart from scale factors, to m(g; ~) so that 
the principle of decreasing mixing distance reduces to that of increasing mixing 
character, a fact whose implications will be discussed briefly in the next subsection. 

To get a simple feel for the meaning of this principle, consider again the special 
case in which an infinitesimal probability increment 6p is transferred from the 
state c~ to/3: For the change in a function a(G;p, w) we have 

Since for convex G, G' is a monotonically decreasing function of its argument, this 
will be positive (corresponding to an allowed process) if and only i fpJw, >p~/w~. 

We have thus proved 

Theorem 3. The mixing distance relative to a reference distribution decreases only 
when states with low values of pJw~ gain probability (or population) at the 
expense of states with higher values of this quantity. 

4.5 Connection with Conventional Thermodynamics 

In conventional thermodynamics, it will be recalled, one can start with the 
entropy principle 5S>>.0 for an isolated system, then derive from it the relation 
6S>~q/T for a system in interaction with a heat bath, by considering the system 
and bath together to comprise an isolated system. Having done this, one may 
reverse the process: Starting with 6S>>. q/T for an arbitrary system, and consider- 
ing the special case of an isolated system for which q = 0, one immediately recovers 
the entropy principle [7]. 

We have done much the same thing here in subsections 4.1 and 4.2, except 
that we have used an arbitrary mixing homomorphic function for the isolated 
system (instead of just the entropy, which is a special case), and for each such 
function have derived a corresponding function for the system of interest alone. 
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Putting it another way, the principle of increasing mixing character for an isolated 
system leads to that of decreasing mixing distance for a system in interaction with 
a bath. Again, the derivation can be reversed. 

Applying the principle of decreasing mixing distance to the special case of an 
isolated system, for which the equilibrium distribution is the uniform one, one 
recovers the principle of increasing mixing character. The only difference is that 
the principle of decreasing mixing distance, as we have formulated it, requires 
prior knowledge of the equilibrium distribution for the system of interest, while 
in thermodynamics this can be calculated in principle (e.g., in the case of a system 
of given temperature and volume, by minimizing the Helmholtz free energy). 
Since conventional thermodynamics fully suffices to determine the equilibrium 
state, this circumstance is not a drawback. 

Since the choice g(p)= - p  lnp for an isolated systems leads to 3S>~0 one 
might expect that the choice G(x) = - x  In x for a system in interaction with a bath 
would lead to 6S>~ q/T, or the direct consequences thereof, for that system. That 
this is indeed the case is easily verified. 

Consider, for example, the canonical, constant volume, ensemble for which 

w , = Q  -a exp ( ~ )  

where Q is the partition function. With G(x)= - x  In x, we obtain 

E 
= -  ~p~ l n p , - ~ -  In Q 

1 
- k T ( E - r S ) -  In Q 

A 
- In Q,  

k T  

where E is the average energy, A the Helmholtz free energy, 
in conventional units, differing by a factor of k from S as 
paper. 

The requirement that this function increases is clearly 
known thermodynamic result that A must decrease under 
In Q is constant at fixed T and V. 

The relation between our principle and conventional 

and S is now expressed 
previously used in this 

equivalent to the well- 
these conditions, since 

thermodynamics, and 
between isolated and nonisolated systems, is summarized in the following table, 
in which arrows indicate directions in which derivations may proceed. The one 
dotted arrow refers to the fact that one needs to know the equilibrium distribution 
in order to derive the uppe r result from the lower one. 
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Isolated 
System 

System 
i 

Interacting 
with Bath 

Conventional 

6S>~0 

iT 
6S>~q/T 

Present Treatment 

6m(g; 7) ~ 0 
l ' i 

t 

I 

--- ~a(G; p, w) >10 

4.6 Partial Equilibrium 

We consider the case of a system which is in equilibrium with respect to some 
degrees of freedom, but not necessarily with respect to all. For example, the 
translational, vibrational and rotational motion might be in equilibrium, with the 
spins aligned in a non-equilibrium distribution; or the various motions in a gas 
may be in local equilibrium everywhere, but the concentration non-uniform, etc. 

Let fl denote the complete set of quantum numbers for those degrees of free- 
dom not necessarily in equilibrium and F the same for the other degrees of free- 
dom. Let P~)r denote the conditional probability that the system is in a state fi, F 
given that it is in a state with quantum numbers fl and that it is in equilibrium 
with respect to the F. Since we are assuming this equilibrium, the unconditional 
probability p~, r (and w~, r in equilibrium) is then 

P~, r =P~P(~)r 
, ~P<~)r--  1, 

W~,r=w~p(~)r r 

where pa is the total probability, independent of F, that the system is in a state ft. 
Inserting these relations into (17) we have: 

~,r - -  = ~ G//p~'~. (27) a(G;p, w)= ~ wepca)rGkwa,r/ 

This shows that we may use the functions a(G; p, w) wherep, w denote the probabi- 
lities p~, w~ of those degrees of freedom which are not in equilibrium. Hence, the 
requirement 

6a(G;p, w)>~O for all convex G(x) over 0>~x 

governs the approach to equilibrium also in the case of a system in partial equili- 
brium. 

5. Examples 

To illustrate the kind of information derivable from this method, we treat in 
this section two very simple examples. The first has to do with diffusion in ideal 
solutions, the second with chemical reactions in ideal gas mixtures. In neither 
case are the results particularly startling, but in both cases they go beyond what 
one could derive with conventional thermodynamics, which we show in each case 
by direct comparison. 
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5.1 Diffitsion in Ideal Solution 

We consider a dilute, ideal solution, not necessarily of uniform concentration, 
described by a solute density p(r). Since the solution is ideal, the solute particles 
are statistically independent of one another, so they can be considered to be 
members of an ensemble. Thus, a state of a particle (ensemble member) is charac- 
terized by its position in space, plus other variables. We assume equilibrium with 
respect to everything except position in space, and use the result of Sec. 4.6, 
Eq. (27), with the sum replaced by an integral over position. Since the equilibrium 
distribution in this case is the uniform one, (27) becomes 

with 

a(G; p, w)= ~ G(p)d3r 

6a = ~ G'(p)6pdar ~ O. (28) 

Because the total number of particles is conserved, we must have a continuity 
equation obeyed : 

6p = - V.  J (29) 

where J is a solute current density vector. Insertion of (29) into (28) gives 

6a = -- ~ G'(p)(V. J)d3r>/O (30) 

which, after integration by parts, becomes 

6a= ~ G"(p)(J. Vp)d3r>>,O (31) 

G"(p) is never positive, but is otherwise arbitrary. Accordingly, (31) is satisfied 
for arbitrary convex G only if 

f J . V p  p j=po~d2r>~O,  all P0, (32) 

where the integral goes over the surface or surfaces where p has a fixed but arbitrary 
value Po, and the inequality must hold for all Po. Apart from unphysical cases in 
which the current at a point is assumed to be influenced by the current at distant 
points which happen to have the same value of p, (32) means to all intents and 
purposes that 

J .  Vp ~< 0 everywhere. 

In other words, the diffusion current must always be in the direction opposed 
to the concentration gradient, i.e., from regions of high concentration into low 
concentration. This result is certainly not surprising, but it is more than one could 
obtain from thermodynamics alone. To compare with the result of conventional 
thermodynamics, we evaluate (31) with the "conventional" choice, 

1 
G ( p ) = - p  In p, G " ( p ) = -  . (33) 

P 
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Insertion of (33) into (31) gives 

1 
6s = -- ~ P (J. Vp)d3r (34) 

where by definition s = a(G; p, w) with G defined by (33). We show by means of an 
example that it is possible to satisfy (34) without satisfying (32). Consider the 
phenomenological diffusion equation 

, I= -- DV p + LpV(V2p), (35) 

where D and L are phenomenological constants, to be determined perhaps by 
fitting empirical data. Substitution of (35) into (34) gives 

6s = D ~ (Vp)Zd3r-g  ~ (Vp). V(V2p)d3r. 

We now integrate the second term by parts, obtaining 
@, 

(~s = D ~ (Vp)2d3r + g ~ (V2p)2d3r >~ O. (36) 

Eq. (36) is satisfied if D, L >~ 0. However, (32) is only satisfied if L = 0, since for 
any nonzero value of L, it is possible to have the second term of (35) larger than 
the first and of opposite sign. Thus, our principle gives more information than one 
obtains from thermodynamics. In this case, of course, the result (32) could also 
have been obtained in other ways, either by requiring local (not just overall) 
entropy increase, or simply by common sense. Nevertheless, this affords a very 
simple example of the ability of our method to yield results beyond those strictly 
obtainable by thermodynamics. 

5.2 Chemical Reactions in Ideal Gas Mixtures 

Consider a mixture of several ideal gas species, capable of undergoing chemical 
reactions, and not necessarily at equilibrium. Let c~ be the equilibrium concentra- 
tion of the v'th species, and l~ its instantaneous concentration. We assume equili- 
brium with respect to everything except concentrations, and again use the results 
of Sec. 4.5. The probability that there will be exactly v~ molecules of each species 
in a given unit element of volume is given by the Poisson distribution 

P{V~}-=O l:~e-l''v~! (37) 

while the equilibrium probability is 

w{v,} = , ,  ,55 e ". (38) 

For this case, we have not been able to evaluate a general function a(G; p, w), so 
we content ourselves with the power functions (12b) or rather the corresponding 
a-functions 

a,= - ~v,~Z w{v~} [~{v~} ". (39) 
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Substituting (37), (38) into (39), one obtains 

au= - E [ I  exp [ - ( n / ~ - ( n - I ) G ) ]  v- ~ 

= - e x p  [ ~ / '  l: l ' 

and 

(4o) 

we have 

with 

m ( g . . ; ? ) - ~ m . . = - ~ ( p ~ - u )  2", m . = -  ~p~ 

2. ( _  1)r(2n)! u2"-"mr • (44) 
m . . =  ~ r ! ( 2 n - r ) !  

r = 0  

Since m0 and m 1 are both constants which do not change when the p's are varied, 
we have for the change in m.. from (44): 

2. ( _  1)r(2n)! 
Am. .  = ~ r !(2n- r)! uz"-rAm~" (45) 

r = 2  

This must be non-negative for an allowed process, independently of u, and this 
leads to further constraints on the Amr, which, however, are simple only for n = 2. 
For this case, we have from (45) 

Am2. = Am 4 - 4uAm 3 + 6u2 Am2 . (46) 

Minimizing this with respect to u, and requiring that the minimum value be non- 
negative, we obtain 

Am4Am 2 ~>2(Am3) 2. (47) 

[-l~-~_ 11 ai¢~> 0. ZLc:_ (41) 

Since a, is negative, (41) means 

1 -  61,>~0, all n~>l. (42) 

If we had used G(x) = - x in x, corresponding to conventional thermodynamics, 
we would have obtained instead of (42) 

We can obtain somewhat more information by making use of the generalized 
power functions 

9.u(P) = - ( P - u )  2" (n integer, u real and variable); (43) 
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We can also apply (47) to our example, since it obviously applies as well to the 
a, as to the m,. From (40), (41), we find 

Substituting (48) into (47), one obtains, after some rearranging: 

The volume element is still at our disposal, and can in particular be chosen so 
small that each 1, is very small, and the exponential on the left-hand side of (44) is 
as close as we please to unity. This gives the result 

Eqs. (42) and (50) are general requirements that must be obeyed by the incre- 
ments in concentrations in ideal gas reaction mixtures. For the case of a single 
reaction proceeding toward equilibrium, they are of course automatically satis- 
fied; in the case of a mechanism involving competing reactions or sequences of 
reactions, however, they are not trivial, and it may be possible to use them to 
exclude certain proposed mechanisms. 

Since these results are obtained from the power functions only, they do not 
represent the most stringent conditions put on such systems by the principle of 
increasing mixing character. 

6. Discussion : Possibilities for Future Work 

The principle of increasing mixing character, which makes precise the common- 
sense notion that less populated states in an isolated system gain population at the 
expense of more populated ones, represents a stronger restriction on allowed 
thermodynamic processes than does the second law of thermodynamics. In this 
paper, we have given what we think is a rather convincing derivation of this 
principle, and then drawn some consequences from it. It would appear that many 
applications of this principle can be made, since it should be applicable to every 
system to which thermodynamics is applicable, and will in each case yield new 
information, though sometimes, as in the diffusion case treated in Sec. 5.1, this 
new information may be rather trivial. 
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Among the infinite number of mixing hormomorphic functions, the entropy 
continues to have a special place, since, in the first place, its exponential gives the 
actual probability of a given non-equilibrium state; and, in the second place, it is 
homogeneous of first order, hence additive, and expressible in purely phenomeno- 
logical thermodynamic terms. It is perhaps worthwhile to examine the question 
of whether there are other mixing homomorphic functions with especially sig- 
nificant or convenient properties such as (but not identical with) these. 

Another question not considered here is that of fluctuations, and to what 
extent they make possible deviations from the principle of increasing mixing 
character for systems of finite size. 

We hope to consider these and other questions in future publications. 

Appendix : Necessary Conditions for Mixing Isomorphic Sets 

In this appendix, we derive some necessary conditions which must be satisfied if a set J/l of mixing 
homomorphic functions m(g; ?) generated by a set d of convex functions g(p) is to be mixing iso- 
morphic. We concern ourselves primarily with requirements on the behavior in the neighborhood of a 
particular point p = 2 imposed on at least some of the g in d .  We restrict ourselves to convex functions 
g(p) which are continuous and possess piecewise continuous first derivatives. Also, since a constant 
can always be added to g(p) without affecting Am(g; 7), we shall assume g(0)= 0 throughout. 

The method we use will be to construct a process in which a very small amount of probability is 
transferred from a state with probability slightly less than 2 to one with probability slightly more, with 
simultaneous probability transfer among the other states such as to lead to maximum increase in 
re(q; ~:). The overall process will be forbidden because some probability has been moved "in the wrong 
direction", hence if d / i s  to be mixing isomorphic, there must be at least one g in d such that re(q; ?) 
decreases. The strength of the results derived will depend on the magnitude of 2. Rather than give an 
exhaustive discussion, we confine ourselves to certain ranges of 2; the reader will easily be able to 
apply the ideas used here to other cases as needed. We first consider: 

Case a: 2<½. 

Let e be a very small number, and define v - 2 + 2e, u - 2 - 3e. Consider an initial probability distribution 
as follows : 

p l = v + l - 5 2 ;  

P2 -P3  - v ;  

P4 =P5 = u. 
All others zero. 

For this distribution, we have 

m(g; ?) = g(v + 1 - 52) + 2g(v) + 2b,(u). 

We now deform the distribution in three steps, the first two of which will increase m, the last of which 
will decrease it, in such a way that the overall process is forbidden. The deformation is as follows: 

1. We equalize the probabilities between the first two states, giving each a probability of 
(2v + 1 - 52). The change in m(g; 7) for this process is 

1 - 52) Aml=2g(2-v+ 2 -g(v)-g(v+l-5X). 

This is just twice the distance ofg((2v + 1 - 52)/2) above the chord drawn from g(v) to g(v + 1 - 52), and 
is necessarily nonnegative for convex g. 

2. The probability u of state 5 is distributed equally among N states, where Nis allowed to approach 
infinity. The change in m(g; ?) this time is 

Amz=Ng(N ) g(u). 
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In the limit as N becomes large, we can replace g(u/N)  with u/N(g'(O)), giving the result 

Am z = ug'(O) -g (u ) .  

This is just the distance of g(u) below the extrapolated tangent to g(p) at p = 0 .  Again, for convex g 
it is nonnegative. 

3. We transfer a very small probability 6p from state 4 to state 3. The change in m(9; 7) is now 

Am 3 = - (g'(u) -g '(v))6p,  

and is negative or zero. The overall process is forbidden, as may be seen by examining the behavior of  
m(qa, 7), Eq. (12c). 

I f  X/is  to be mixing isomorphic, there must be at least one g in o4 for which Am a + Am 2 + Am 3 < O, 
i.e., for which the last, negative, term is large enough to compensate for the other two. There must be 
such a g for every ~ and 6p, no matter how small. One sees immediately that this can be accomplished 
only if there are g's which lie arbitrarily close to straight lines in the intervals O~p<~u, and v<~p~ 
(v+ 1-52) ,  even in the limit as both u and v approach 2; and which also have a finite change in first 
derivative in an arbitrarily small interval about 2. In other words, the function gz(P), Eq. (12c), or a 
function differing from it by an additive linear function, must be arbitrarily well approximated by g 
in ag, at least in the interval 0~<p~<(1 42). For example, if J only contains the power functions 
defined in Eqs. (12b) and (43), then J¢ is definitely not mixing isomorphic. 

This result holds only for 2 <  1/5; in most applications, however, one needs only to consider 
infinitesimally small probabilities for single states. This means that, in most practical circumstances, a 
mixing isomorphic set must contain, or approximate arbitrarily well, all the m(qz; 7) of Eq. (12c). 

For other ranges of 2 similar methods yield somewhat weaker results. For example, consider 

Case b: ½<2<¼.  

Again let e be small, and define v -  2 + e, u = 2 -  3e~. Let the initial distribution be 

Pa = v + q ,  

Pz=P3 =v, 

p 4  = u ,  

Ps- -  1 42--q ,  

all others zero. 

where of course, 0~<q~<(1-42). 
Again, the deformation consists of equalizing between the first two states, distributing the proba- 

bility of the fifth state among N states, and finally transferring an infinitesimal probability from state 4 
to state 3. The change in m(g; 7) is again the sum of three contributions, the first two positive, the third 
negative, as follows: 

A m , = g g ( 2 V ~ q ) - g ( v + q ) - g ( v ) ;  

A m2 = (1 -- 42 - q).q'(O) - g(1 - 42 - q); 

Am 3 = - (g'(u) -g ' (v))ap.  

For the sum of these to be negative, we must have g's which lie arbitrarily close to straight lines for 
0 ~ p ~ < ( 1 - 4 2 - q ) ,  and v<~p<~(v+q), as well as a finite drop in first derivative in an arbitrarily small 
interval about 2. However, since 0~<q~<(1-42), there is no restriction imposed on the behavior of 
g(p)  in the interval (1 - 42) < p  < 2. 

For larger 2, the results become still weaker, but the reader should have no difficulty deriving 
them as needed. The weakest case is 

Case c: 2>½. 

Here there can be no more than one state with probability 2 or greater. The best that one can do is 
start with an initial distribution Pl =2,  Pz = ( 1 - 2 ) ,  then first transfer 6p from state 2 to state 1, after- 
wards distributing the remainder of p2 among N states. The change in m(q; 7) this time, to first order 
in infinitesimals, is 

A m = (1 - 2)g'(0) - g( 1 - 2) - (g'( 1 - 2) - g'(2) ),Sp. 
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This can be made negative without any discontinuity in g. The only requirement is that g must undergo 
a ;finite change between (1 2) and 2, and that g lie arbitrarily close to a straight line in the interval 
0~<p~<(1-2). 
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